Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Microbiol ; 14: 1043967, 2023.
Article in English | MEDLINE | ID: covidwho-2254595

ABSTRACT

Sequencing technology is the most commonly used technology in molecular biology research and an essential pillar for the development and applications of molecular biology. Since 1977, when the first generation of sequencing technology opened the door to interpreting the genetic code, sequencing technology has been developing for three generations. It has applications in all aspects of life and scientific research, such as disease diagnosis, drug target discovery, pathological research, species protection, and SARS-CoV-2 detection. However, the first- and second-generation sequencing technology relied on fluorescence detection systems and DNA polymerization enzyme systems, which increased the cost of sequencing technology and limited its scope of applications. The third-generation sequencing technology performs PCR-free and single-molecule sequencing, but it still depends on the fluorescence detection device. To break through these limitations, researchers have made arduous efforts to develop a new advanced portable sequencing technology represented by nanopore sequencing. Nanopore technology has the advantages of small size and convenient portability, independent of biochemical reagents, and direct reading using physical methods. This paper reviews the research and development process of nanopore sequencing technology (NST) from the laboratory to commercially viable tools; discusses the main types of nanopore sequencing technologies and their various applications in solving a wide range of real-world problems. In addition, the paper collates the analysis tools necessary for performing different processing tasks in nanopore sequencing. Finally, we highlight the challenges of NST and its future research and application directions.

2.
Front Genet ; 13: 1008792, 2022.
Article in English | MEDLINE | ID: covidwho-2055015

ABSTRACT

Nanopore sequencing technology (NST) has become a rapid and cost-effective method for the diagnosis and epidemiological surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the coronavirus disease 2019 (COVID-19) pandemic. Compared with short-read sequencing platforms (e.g., Illumina's), nanopore long-read sequencing platforms effectively shorten the time required to complete the detection process. However, due to the principles and data characteristics of NST, the accuracy of sequencing data has been reduced, thereby limiting monitoring and lineage analysis of SARS-CoV-2. In this study, we developed an analytical pipeline for SARS-CoV-2 rapid detection and lineage identification that integrates phylogenetic-tree and hotspot mutation analysis, which we have named NanoCoV19. This method not only can distinguish and trace the lineages contained in the alpha, beta, delta, gamma, lambda, and omicron variants of SARS-CoV-2 but is also rapid and efficient, completing overall analysis within 1 h. We hope that NanoCoV19 can be used as an auxiliary tool for rapid subtyping and lineage analysis of SARS-CoV-2 and, more importantly, that it can promote further applications of NST in public-health and -safety plans similar to those formulated to address the COVID-19 outbreak.

3.
Front Microbiol ; 13: 858770, 2022.
Article in English | MEDLINE | ID: covidwho-2022789

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been fatal to human health, affecting almost the entire world. Here we reported, for the first time, characterization of the genetic variants of SARS-CoV-2 circulating in Kuwait to understand their genetic diversity and monitor the accumulation of mutations over time. This study randomly enrolled 209 COVID-19 patients whose nasopharyngeal swabs were positive for SARS-CoV-2 between February 2020 and June 2021 using RT-PCR. The whole genomes of SARS-CoV-2 from the nasopharyngeal swabs were sequenced using the Oxford Nanopore sequencing technology following the ARTIC network protocol. Whole-genome sequencing has identified different clades/sub-clades circulating in Kuwait, mimicking the virus's global spread. Clade 20A was dominant from February 2020 until January 2021, and then clade 20I (Alpha, V1) emerged and dominated. In June 2021, the number of cases infected with clades 21I, 21A, and 21 J (Delta) increased and dominated. We detected several known clade-defining missense and synonymous mutations and other missense mutations in the genes encoding important viral proteins, including ORF1a, S, ORF3a, ORF8 regions and a novel mutation in the N region. ORF1ab region harbored more mutations and deletions (n = 62, 49.2%) compared to the other 12 gene regions, and the most prevalent missense mutations were P314L (97%) in ORF1b and D614G (97%) in the S glycoprotein regions. Detecting and analyzing mutations and monitoring the evolution of SARS-CoV-2 over time is essential to help better understand the spread of various clades/strains of SARS-CoV-2 and their implications for pathogenesis. In addition, knowledge of the circulating variants and genome sequence variability of SARS-CoV-2 may potentially influence the development of vaccines and antiviral drugs to control the COVID-19 pandemic.

4.
Nanomaterials (Basel) ; 12(9)2022 May 02.
Article in English | MEDLINE | ID: covidwho-1841405

ABSTRACT

Foodborne pathogens have become the subject of intense interest because of their high incidence and mortality worldwide. In the past few decades, people have developed many methods to solve this challenge. At present, methods such as traditional microbial culture methods, nucleic acid or protein-based pathogen detection methods, and whole-genome analysis are widely used in the detection of pathogenic microorganisms in food. However, these methods are limited by time-consuming, cumbersome operations or high costs. The development of nanopore sequencing technology offers the possibility to address these shortcomings. Nanopore sequencing, a third-generation technology, has the advantages of simple operation, high sensitivity, real-time sequencing, and low turnaround time. It can be widely used in the rapid detection and serotyping of foodborne pathogens. This review article discusses foodborne diseases, the principle of nanopore sequencing technology, the application of nanopore sequencing technology in foodborne pathogens detection, as well as its development prospects.

SELECTION OF CITATIONS
SEARCH DETAIL